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I. Introduction and Program Objective

Current methods of lifetime assessment leave much to be desired. Typically, the expected life of
a full-scale component exposed to a complex environment is based upon empirical interpretations
of measurements performed on microscopic samples in controlled laboratory conditions.
Extrapolation to the service component is accomplished by scaling laws which, if used at all, are
empirical; little or no attention is paid to synergistic interactions between the different components
of the real environment. With the increasingly hostile conditions which must be faced in modem
aerospace applications, improvement in lifetime estimation is mandated by both cost and safety
considerations.

This program aims at improving current methods of lifetime assessment by building in the
characteristics of the micro-mechanisms known to be responsible for damage and failure. The
broad approach entails the integration and, where necessary, augmentation of the micro-scale
research results currently available in the literature into a macro-scale model with predictive
capability.

In more detail, the program will develop a set of hierarchically structured models at different
length scales, from atomic to macroscopic, at each level taking as parametric input the results of
the model at the next smaller scale. In this way the known microscopic properties can be
transported by systematic procedures to the unknown macro-scale region. It may not be possible
to eliminate empiricism completely, because some of the quantities involved cannot yet be
estimated to the required degree of precision. In this case the aim will be at least to eliminate
functional empiricism. Restriction of empiricism to the choice of parameters to be input to known
functional forms permits some confidence in extrapolation procedures and has the advantage that
the models can readily be updated as better estimates of the parameters become available.

II. Program Organization

The program has been organized into specific tasks and subtasks as follows.

Task 100. Lifetimes of metallic dispersed-phase composites

Most service materials fall into the category of dispersion-hardened metallic composites. This task
will consider the problem of dispersion hardened materials in general, but with two specific
materials, NiAl and MoSi2/SiC in mind.

Task 110. Identification and modelling of micromechanisms

The purpose of this task is to determine what micromechanisms are operative in the high-
temperature deformation of dispersion-hardened materials. In the general case this will be done
by a literature search. For specific materials, the micromechanisms will be determined from the



2

experimental program at NRL. Once identified, each of these micromechanisms will be modelled,
in order to determine what are the critical parameters which determine its effect on plastic flow
and values for these parameters. Also to be determined is whether the modelled critical values
are dependent on quantities which must be obtained from a smaller scale model.

Task 111. Equiaxed dispersoids

This task will consider dispersions of the type encountered in NiAl-like materials. That is, the
dispersoids are considered to be small compared to the grain size. The term 'equiaxed' is used
because the particles are roughly of the same size in all three dimensions. However, this is not a
requirement for this task. Rather, it is necessary that the particles not be too large in the dimension
normal to the slip plane, so that they can be surmounted with relative ease by cross-slip and/or
climb without the generation of appreciable back-stress.

Task 112. Anisotropic dispersoids

This task covers the case of dispersoids which are elongated in the direction normal to the slip
plane. An example is SiC fibers in MoSi 2. In this case, plastic flow around the dispersoids takes
place by a combination of glide and climb, but is a protracted process during which large stresses
acting in opposition to the applied load are developed.

Task 113. Grain boundary effects

This task will examine the role of grain boundary processes in high-temperature deformation.

Task 120. Macroscopic stochastic model for creep

In real materials it is likely that more than one mechanism will be operative, either in parallel or
in series. The information gained in task 110 is not sufficient to describe this situation. Once the
critical parameters for individual mechanisms have been determined, it is necessary to combine
them in a macroscale stochastic model. This will be done by determining critical stresses and
activation enthalpies as a function of local geometry and using these values in a finite-temperature
simulation of creep through a random array of dispersoids. Careful attention must be paid to
possible interactions between mechanisms.

Task 130. Extension to cyclic deformation

The final step in task 100 is to extend the results to the case of cyclic deformation. Irreversibility
is an intrinsic feature of the model in task 120. However, it is likely that other, as yet
unrecognized, characteristics of cycled deformation will have to be considered.
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Task 200. Lifetimes of piezoelectric ferroelectrics

Failure in cyclic loading of sensors and actuators formed from lead zirconate titanate (PZT) is a
continuing problem. PZT is a ceramic and therefore differs from the materials considered in task
100 in that plastic deformation is not involved. This task will examine, modelling as necessary,
the operation of PZT devices, in order to determine the factors governing lifetime limitation.

Task 300. Reporting

Running concurrently with tasks 100 and 200, this task will inform the Navy Program Manager
and Contracting Officer of the technical and fiscal status of the program through R&D status
reports.
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III. Technical Progress

Task 100. Lifetimes of metallic dispersed-phase composites
Task 110. Identification and modelling of micromechanisms

Cyclic Deformation

We are concerned to examine the effects on AK consequent on a failure to achieve complete crack
closure upon removal of an applied load. Such a failure has been severally attributed to two
causes: (1) the presence of a mismatching surface asperity or protrusion and (2) the effects of
plastic deformation. The analysis given here deals with these in turn.

The Effects of Asperities

In the interests of mathematical simplicity and without prejudice to the conclusions, we depart
from normal experimental conditions and consider a two dimensional crack which lies in the
interval lxi ! a of the plane y =0 of a body subjected to an externally applied, time dependent
tensile stress a, which varies from zero to ao.. In these circumstances we have:

AK = ao. a' /2"2 .
At a stress a prior to any encounter with asperities the crack surfaces at a distance I xI = c from
the center of the crack will have suffered an elastic displacement of magnitude:

A =a =-(a 2 c)

where A = p1,/2nt(l-v), p is the shear modulus, v is Poisson's ratio and X, is the magnitude of the
Burgers vector of a unit dislocation. In the interests of mathematical simplicity we suppose
symmetry about the crack center so that asperities occur in pairs of height 6, that they both make
contact when the stress is - at IxI = c and impede crack closure at all stresses less than r. We
can, at this stage, suppose either that the asperities are rigid so that the displacement, 8u, at lxI
= c remains equal to 6 as the applied stress is reduced below the value T or alternatively that bu

declines to some equilibrium value as the asperities and their environs in the surfaces deform
either elastically or plastically or both under the compressive loads developed in them. The latter
approach is the more realistic and will be that finally adopted here. However, the treatment
necessary when the asperities are considered to be rigid is much more general. Accordingly, we
shall for the sake of completeness take the general treatment through to the stage where
specification of deformation in the asperities becomes necessary.

We divide the crack into three segments: lxi g c, c i Jxl • b, b g x ! a; c=b. We then follow the
well known technique first introduced by Leibfried [1] and independently by Head and Louat [2]
which employs the concept of dislocation continua to describe the situation in each of these ranges
in terms of an equation of equilibrium.
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We have for the distribution f(x) of dislocation over the length of a crack:

A ffx) A - a (W)
D x-t

where integration is over the union of intervals, D, in which dislocation occurs and o(t) is the
stress applied at the point 0 s t • a.. The solutions of such equations have been given by
Muskhelishvili (3) and by Louat (4). In the present case which involves three intervals, the
solution is of the form:

fAx) = -a 2_ C)
2 _c 2)(b

2-t2 )(a 2 _t) dt

a _X)a X -x

+ Q
"/(X-2_ C2)(b '-x )(a 2-X 2)

where Q is an arbitrary polynomial of the second degree. From symmetry we choose Q to be of
the form S2x , where S is a parameter such that the number of dislocations in the interval b x Ix

Sa is, for stresses less than T, equal to 8/;,. To satisfy this requirement we set
S2 = ad 2 + e

so that:

Ax) X x 2++d)+e)
A(a2X )(b 2 _X )(X 1_C) iA

Here we discern two contributions to the whole distribution, only one of which is dependent on
stress. This stress sensitive distribution (in a) vanishes at x = d which is chosen so that the total
associated displaacement in the range b < I x I • a is zero. Thus, integrating that part of the
distribution which depends on a we require that:

(C 2 _d) K(k) + F(a Cc )E(k) =0,

which when rearranged becomes:

d2=c2+(a -c 2)E(k). (1)
K(k)

Here K(k) and E(k) are, respectively, complete elliptic integrals of the first and second kinds; the
quantity k is given by:

k = {(a2 - b2)/(a2 - c2))}2.
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In the other distribution, which is independent of stress, the quantity, e, is such that the total
number of dislocations in the same interval is equal to a number a / A. Thus, we require that:

6= va-c J e dx - 2eXK(k).

T(a 2 -c 2)

2%AK(k) 
(2)

We are here concerned, in particular, with conditions which apply when the load has been
removed so that o is zero. In these circumstances and for the rigid asperity the distribution
function becomes:

f) -ex

Va2 _x )(b 2 _-x)(X 2 _-C )

The stress intensity is then readily evaluated by calculating the stresses at a point t at the tip of the
crack:

Aff(x)dx =n~)

D x-t

In the case of deformable asperities, the value of e must be such that the stress developed therein
has some characteristic value r, which is associated with a surface displacement 68. In small
plastically deformable materials (e.g. metallic whiskers) this stress is of order:

D

where D is the least linear dimension of the cross section of the material; here D = b - c. In the
cases where the asperity itself is not deformable it must be considered to be supported at its ends
by on material which is deformable. The stresses in the deformable regions adjacent to the areas
of impingement will be of the same order as that in the asperity itself. We conclude, therefore,
that we can achieve an adequate representation by supposing that

lpb pb0
Db-c (2)S D b-C

where b0 is the Burgers vector of a lattice dislocation.

The stresses in the asperities are readily evaluated. The stress o(t) at a point t, which lies in an
asperity, due to the elastic displacements of the surfaces of the crack is given by:
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o() =A fAx)dx

D X-t

The mean value of this stress over the length, (b-c), of the asperity is

-:AeK(p) (3)
(b -c)/a-c" 3)

b b 2-c2

= a 2 C2

Equating (2) and (3) we find that

2(l-v)bo 0 r --C2

IK(p)

We are now in a position to evaluate 68. We have

6 = i(X)dx = 2el.K(k)
b Fa 2-C 2

Thence, substituting for e we find

k . 4(1 -v)K(k)

bo K(p)

For the primary range of interest in which (b-c)/(a-c) < < 1 we determine that K(k) lies in the
range n/2 to 10 while K(p) = n/2. Accordingly:

8€
-3 < i. < -20.bo0

In the case of the other possible range in which a-b becomes very small K(p) exceeds K(k)
indicating improbable situations in which 8jb0 < 1.

The remnant value of AK, that consequent on the crack being held open at a points distant c from
its centre by asperities of height 8o may be determined by calculating the stress at the tip of the
crack. On substituting for e the stress at any point, t, outside the crack, is easily seen to be:
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Aef xdx

D V~(X2_a )(X2-b 2)(X2 -C)2 Xr:)

pb ra2•- C2 t
2K)/(t 2-a)t2b )(t2-C

When t - a + A, A < < a, this becomes

pb a Va2-2 K

2K(p)V(2aA)(a 2-b2)(a 2-c 2)A 2

Therein,

K= pboa

2 VFK(p) Fa Tc )
pabo

4K(p)C "C)

Taking appropriate values: a = 1 cm.; b = 3XlO., cms.; a-c Ž 300XIO-8 cms. and; K(p) =r/2,
we have

K•
6 X 10s

This represents a value for AK which is much smaller than those employed in practice. We
conclude, therefore, that the existence of misclosure from the presence of asperities can give only
a minimal change on the effective value of the applied AK.

The final matter of consideration here is the possibility, first suggested by Elber [ 19 ], of
premature crack closure consequent on the effects of residual stresses due to plastic deformation
in the neighbourhood of the crack tip. We will proceed to show on the basis of dislocation theory
that the associated crack surface displacements are too small to provide such closure. In so doing
we shall run counter to the results of analyses based on plasticity theory which have indicated
contrary results. An examination of the this work indicates that since our treatment does not
involve a model the probable source of the discrepancy lies in the assumptions involved in the
models employed by the plasticians.

To proceed, we note that plastic deformation is necessarily achieved as the result of the formation
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and movement of dislocations. We recognize also, that the displacement engendered by a
dispersion of dislocations is representable as the result of a linear superposition of the
displacements due to the individual dislocations. In the first instance we particularize to plain
strain and see that the dislocations in the neighbourhood of a crack tip have been formed either
by the symmetrical operation of sources in the material or by asymmetrical emission from (or
absorption by) the crack. Taking the crack to lie in a plane y = constant, emitted dislocations may
be regarded as having components b, and by in the x- and y- directions. This asymmetrical
formation is associated with a displacement (by) of the crack surfaces. We recognize, that besides
these displacements, each dislocation may, in the first instance, be regarded as causing elastic
displacements of the surfaces which are just those of a dislocation in an infinite medium. Referred
to the position of a dislocation, the important y-component of displacements due to the y-
component of an edge dislocation can be written:

u =-- by XY +2bZ arctan(x/y)Y 4x(l-v) (X2+y2)

Again, the y-component of displacement of a dislocation with Burgers vector in the x-direction
is:

bx (X 2+y 2) y 2
U =(1-2v)i bY On I- v) b 2 x4x(l_ V)(x 2+y 1)

Neither component of this displacement is significant here; the logarithmic term diverges but gives
a value, comparable with the magnitude of the Burgers vector, only at distances along the crack
surface conveniently measured in miles.

Surface displacements are also developed in order that the surface be stress free. These
displacements can be found through the use of the approach [Louat, 1963] in which the derivative
of such displacements are recognized as being representable as distributions of dislocations. Thus,
we take as a condition for equilibrium:

0 (x-t)

The solution of this equation is given by

--= - -I"f o(t) d
IC 2A 0 (f-x)

Now, in an infinite solid, an asymmetrically produced dislocation which has a Burgers vector by
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and which is located at the point (O,y), referred to the crack tip, produces a stress, ., at the
positions of the line of the crack surfaces of amount:

jabY y(3x 2-y 2)

2x(lI- v)(x 2+y) 2

The displacement at a point xo is then given by:

x. o- /o-yfqx~dx= b pi 3/2 (-d Y dt
0 7 0Ir V/x 0 dy( 2 ,)t)

2 2
b (-d )I-x. + ixoy +Y

4% dy Xo-V2xo +y2

This displacement is additive to, but less than and of the opposite sign to that of the rigid
displacement involved in the formation of the dislocation. To illustrate the magnitudes involved,
we note that when x0 = y and uy z by /2, this first, and dominant term, has a maximum of
magnitude .28 by. It is zero when x =-.

Turning to the effects consequent on the presence of stresses oyy associated with the x-components
of the Burger vectors of dislocations produced asymmetrically, we find in a similar fashion,
displacements which have negative sign, a maximum of -bJ/V/27, again at xO = y, and which
vanish at xo = -.

In summary we discern that, besides the surface displacements of dislocation formation there is
a total of five other elastic contributions to the surface displacements. These are: the (three)
appropriate infinite-solid-displacements (in the y-direction) due the two dislocation components,
b. and by and the (two) displacements which arise as a consequence of the normal stresses acting
on the crack surfaces. Individual contributions are variable in sign and in total are seen by
numerical evaluation to conform approximately at large distances from the crack tip to the major
contribution, namely to that which arises in a infinite solid due to the y-component of the Burgers
vector,namely:

2 b-arctan(x/y)

Whence we see that closure is only just achieved under zero applied stress and at x =•.

Finally, we have to examine the effects of the remaining dislocations those produced in dipole
pairs from the operation of symmetrical sources. Since the displacements due individuals of a
dipole pair are of essentially of opposite sign, there are two effects, one towards crack closure the
other favouring crack opening. Because of the constraints imposed by plastic deformation on the
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geometric disposition of the dipoles, the nett effect of individual pairs is apt to favour crack
opening. Again, since their separations are generally less than the size of the plastic zone, dipolar
effects on the surface displacements can be significant only at distances from the crack tip which
are comparable with the size of the plastic zone. That is, at distances at which the effects of the
asymmetrically produced dislocations are small.

We conclude, at least in the case of plain strain, that the displacements of the crack surfaces
developed from plastic deformation at crack tips are incapable of causing closure under non-
vanishing applied loads.

We now pass to a consideration of closure under plane stress conditions. We suppose that crack
propagation has resulted in the appearance of a lip and, taking the most restrictive possible case,
that this lip makes contact over the whole length of the crack when the applied load is removed.
Proceeding as before we take the equilibrium dislocation function to be that appropriate for a
uniform loading, oa over the whole length of the crack:

a
F(x) 

'
%tA a 2•_x 2

so that the total displacement of crack surfaces is:

JF(x)dx = aoal

Now, the stress or is supposed to be applied uniformly over the crack surfaces, area: 2aH where
H is the thickness of the plate. But the area available is only that provided by the lip thickness h

4ha. This is fraction 2h/H of the plate area. The mean effective stress, a, is:

2o h

* H

Taking reasonable values, h = 1L and H = 1mm. we have

r
* 500

If we suppose in conformity with our approach in dealing with asperities that

±-b - 3X 10-4p,
h
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we find that

o. = 6X 10" -.

This estimate could be increased if it were felt that the value adopted for ur is too small. Thus,
we might take o, to be a few times the flow stress of the material in which case a, would
a few hundredths of a,. This would still represent a value much smaller than the stresses normally
applied to achieve fatigue. Even so such an increase can be expected to more than compensated
for by the correction of the assumption that the plastic zone runs the full length of crack. The
effect of this sort of misclose is thus seen to be of little moment.

Conclusions

We have seen that misclosure of a fatigue crack can have little effect on the effective value of AK.
This has been found to be in both the case of asperites on the crack surface or and for that of the
lips formed when fatigue occurs in a plate so thin that plane stress conditions have significant
effects.

Again, we have found that plastic deformation in plane strain is incapable of providing crack
closure at any fraction of the peak applied stress.
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